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Abstract

An elongational flow field is imposed on a solution of block copolymers consisting of semirigid macromolecules with rigid, rodlike

sequences of units in combination with random coil (flexible) units. The problem is formulated according to the lattice treatment of Matheson

and Flory. In this formulation, the system consists of rigid blocks whose lengths and locations are fixed by the structure within each

macromolecule. These blocks are separated by random coiled units. An excess free energy other than the equilibrium Gibbs free energy of the

quiescent solution has to be considered due to the flow field that tends to align the rods. This excess free energy is calculated from the

potential energy of rods when a steady-state, homogeneous and irrotational flow field is applied to the solution. The effects of composition,

polymer–solvent interaction, size of the co-polymer and flow rates are investigated. Depending on the size and number of rods, some of the

chains studied exhibit a biphasic region at equilibrium that shifts to lower concentrations with increasing flow. Longer chains with shorter

rods that are isotropic at equilibrium, exhibit a biphasic region at finite values of flow. The degree of orientation increases sharply when the

system is biphasic. For larger flows, the orientation function is very close to unity which is perfect orientation.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of flow induced alignment of block

copolymers is an important technological problem. There

have been important advances in the understanding and

production of these systems, which are now well documen-

ted in the literature [1]. Of particular significance is the

nanostructured engineering of block copolymers based on

self assembly and microphase equilibria [1]. Use of block

copolymers of two different types, such as sequences of

rigid and flexible components, introduces the advantage of

controlling the compositions of phases, which is otherwise

difficult in mixtures of different polymers due to their

limited miscibilities [2]. As a general rule, in a phase

separated mixture of rodlike and coiled polymers, although

the isotropic phase may tolerate some amount of the rodlike

species, the anisotropic phase excludes the flexible chains

completely [3]. The different phases in rod-coil block
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copolymers may further be oriented and reorganized by

applying external fields. An efficient way of creating desired

nano-structures in such systems is by applying a flow field,

most commonly by shear or extensional flow [1]. Although

flow induced orientation is a widely used method in polymer

processing and manufacture, the relationship of a flow field

to the phase behavior of block copolymers at the molecular

scale is not yet fully understood. One way of studying these

dependences at the molecular level is by the use of lattice

models of solutions of polymers. Equilibrium lattice

theories of polymers of different flexibilities are widely

studied in the literature, based on the works of Flory, Abe,

Matheson, Ballauf and Lin [4–14]. In the present paper, we

employ the lattice model of Matheson and Flory [7] to study

the effects of an extensional flow field on the orientability of

block copolymer chains, and their phase separation behavior

and the stability of different phases. We also study the effect

of the size and number of repeating blocks in the chains and

the effects of thermodynamic variables such as the polymer–

solvent interaction for these systems when they are subject

to an extensional flow field.

The present study rests on evaluating the orientational
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entropies of the rodlike sequences of rod-coil block

copolymers in a small molecule solvent. The lattice theory

of binary mixtures of a rigid, rodlike solute with a small-

molecule solvent has been formulated by Flory [15] and

Flory and Ronca [16]. Although the theory is in good

agreement with experimental results for some polymers,

departures from the theory are exhibited for some other

polymers, especially for high molecular weight ones. This

can be attributed to the deviations from perfect rigidity that

was assumed in the theory. Recently, Abe and collaborators

improved the theory by assigning flexibilities to the rodlike

components in a mixture of rod-coil-solvent system [9].

Previously, it was shown [6] that a system of identical rods

joined by flexible connections should exhibit nematic-

isotropic phase equilibria that very nearly coincide with the

equilibria for disconnected rods of the same length.

Semirigid chains which contain inherently flexible units or

sequences of such units, at certain locations along the

otherwise rigid chain have been examined by Matheson and

Flory [7]. They considered solutes that incorporate both

features in the same molecule, i.e. rigid, rodlike sequences

whose orientations are mutually independent and interven-

ing sequences of random coiled units of variable length. The

system was modeled with lattice theory and the partition

function, free energy of mixing, chemical potentials and

conditions for phase equilibrium have been formulated. Our

flow field model is based on the Matheson–Flory treatment.

The effects of a steady state extensional flow field on a

solution of rodlike particles were first studied by Marucci

and Ciferri [17]. They formulated the contribution to the

Gibbs free energy of the solution under the aligning effect of

the flow field. The treatment of Marucci and Ciferri [17] was

extended by Bahar and Erman [18] to include the effect of

any homogeneous flow field on a solution of rodlike

particles. They adopted the improved formulation [16] of

the exact lattice treatment for the equilibrium free energy

and calculated the degree of flow induced orientation in

terms of the orientation function.

In the present study, we combine the equilibrium lattice

model of Flory and Matheson [7] with the lattice flow model

of Bahar and Erman [18] to analyze the behavior of block

copolymers in an extensional flow field.
2. Review of the lattice model and formulation of the

problem

The copolymer chain consists of n rigid blocks and n

flexible chains, joined together to form an alternating block

copolymer. We consider the case where all the rodlike

segments have equal length. When the chain is placed in an

extensional flow field, the forces coming from the flowing

solvent will be transmitted to each segment of the

copolymer through frictional forces. These forces will

tend to distort the overall conformations of the chain by (i)

rotating the rods along the direction of flow, and (ii)
translating the rods relative to each other. Relative

translations of two rods connected by a flexible coil will

store strain energy into the coil. However, under flow fields

that are small perturbations from the quiescent solution, the

dominant effect of the flow field will be the direct rotational

effect on the rigid sequences. In the present treatment, we

ignore the loss of configurational entropy of the coils, and

assume that the only contribution comes from the direct

rotational effect of the flow field on the rods.

The problem then becomes similar to the kinematics of

disconnected rodlike molecules subjected to an irrotational

flow field, which has been considered by Bahar and Erman

[18].

It is also worth noting that there is a basic analogy

between the present model and the uniaxial stretching of

network chains embedded on a lattice, which has previously

been introduced by Mark and collaborators [19–22].
2.1. Free energy change in elongational flow

The center of mass of the rod is situated at the origin and

the rod is divided into x segments, each of length b.

According to the conventional lattice theory, the size of

segments is such that each of them occupies one cell of the

lattice. An ensemble of n2 randomly oriented rodlike

molecules in the flow field possess an additional free energy

DGF, compared to the quiescent solution, given by

DGF Z 2xn2h
Xx=2
mZ1

fðrmÞj
j
0 i (1)

where rm denotes the location of the m’th segment relative

to the origin, x is the friction coefficient, f is the velocity

potential and j is the angle which the rigid rod makes with

respect to a preferred orientational axis which is the

direction of the elongation flow. Angular brackets in Eq.

(1) denote the ensemble average over all possible orien-

tations, and the subscript F indicates flow. The potential for

the m’th segment is derived as [18]

fðrmÞZ
1

4
GðmbÞ2ð3 sin2jK2Þ (2)

When Eq. (2) is substituted into Eq. (1), the expression for

the free energy due to elongational flow is obtained as

DGF Z
1

16
n2xGb

2ðx3 C3x2 C2xÞhsin2ji (3)

where G is the stretching rate.
3. The total free energy

The change in free energy, DG, due to mixing and flow of

a system of block copolymers consisting of rodlike and

flexible sequences in solution is obtained by addition of the

free energy due to elongational flow DGF and the Gibbs free
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energy of mixing:

DG

RT
Z n1 ln v1 Cn2 lnðv2= �xÞC ðn1 C �xn2Þ½ð1K1= �xÞv2

K ð1KQÞ lnð1KQÞKQKvc ln zc Ccv1v2�

Knn2ðln �y2 CCÞC
1

16
nn2xGb

2ðx3 C3x2

C2xÞhsin2ji (4)

where v1 and v2 denote the volume fraction of solvent and

solute molecules, respectively, n1 and n2 are their

corresponding number of molecules. We consider only a

monodisperse system in which all the chains have equal

length. Each chain has n rodlike blocks and n coiled blocks.

�x is the total length of the chain, vhZqhv2 and vcZ(1Kqh)v2
are the volume fractions of rigid and random coiled

segments, respectively. qh is the fraction of rigid segments

in all solute molecules, v2ZvcCvh is the volume fraction of

the solute in the mixture, and

QZ vhð1K �y=xÞ (5)

where �y is the average disorientation for all sequences and x
is the length of a rodlike sequence. In Eq. (4), zc is the

internal configuration partition function for a coil segment

relative to zhZ1 for a rodlike segment and c is the familiar

interaction parameter. In the limit of small average

disorientations, C is given by CZ2 lnðpe=8ÞZ0:131. The

elastic free energy of the coiled parts have not been included

in Eq. (4) in as much as they do not induce additional

orientation in the rodlike sections.

The expected number of situations accessible to the jth

solute molecule added to the lattice is obtained as

vj Z n0 K
XjK1

1

xi

 !

!
n0 K

PjK1
1 xi

n0

" #xcjCyjK1
n0 K

PjK1
1 xi

n0 K
PjK1

1 ðxhi KyiÞ

" #xhiKyj

(6)

where n0 is the total number of sites in the lattice, yi which

also serves as a measure of disorientation of molecule i

along the preferred axis, is the number of sub-sequences

required to make the rodlike sections of molecule i

conformable to the cubic lattice. xcj and xhj are the numbers

of random coil and rigid segments, respectively. For n2
molecules, this equation becomes

vn2 Z
n0ð1Kv2Þ

x

½1Kv2 Cv2ð
P

yi=xn2Þ�
x
½1Kv2 Cv2ð

X
yi=xn2Þ�

y

(7)
where

Xn2
1

yi

is given as

Xn2
1

yi Z qh �xn2
�y

x

� �
(8)

The final form of Eq. (6) becomes

vn2 Z
n0ð1Kv2Þ

x

½1Kv2 Cv2ð �y=xÞ�
x
½1Kv2ð1K �y=xÞ�y (9)

The orientation distribution n2y/n2 at the equilibrium

disorder is obtained as

n2y

n2
ZA expðKa sin jÞwy (10)

where A is the denominator in Eq. (10), and wy is the a priori

probability for the interval of orientations associated with

disorientation index y. It is given by

wy Z sin j
dj

dy
(11)

The relationship between j and y is as

yZ
4x

p

� �
sin j (12)

Previously, [18], the form of the constant A in Eq. (10) was

found to be

Azfn Z

ðp=2
0

sinnj expðKa sin jÞ dj ðnZ 1; 2;.Þ

(13)

a in Eq. (10) is

aZ
K4

p
x ln½1Kv2ð1K �y=xÞ� (14)

Eq. (10) is the form of the orientation distribution and Eq.

(14) gives a for no flow. In case of flow, there will be an

additional term for a. To find this additional term, Eq. (4)

can be differentiated with respect to y and equated to zero to

get the orientation distribution n2y/n2 at equilibrium. The

form of the orientation distribution is the same as Eq. (10),

but the new form of a becomes

aZ
K4

p
x ln½1Kv2ð1K �y=xÞ�C

1

16
xGb2ðx3 C3x2

C2xÞ sin j (15)

The average hsin2ji required to calculate the flow energy

term in Eq. (3) is obtained as

hsin2jiZ f3=f1 (16)

where f3 follows from Eq. (13) with nZ3.



Fig. 1. Phase diagram for a binary system consisting of a solvent and a

solute having single, rodlike sequence with axial ratio 15 and appended tail

of a coil with five repeat units.
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4. Chemical potentials and conditions for phase

equilibrium

The chemical potential of the solvent obtained by

differentiation of Eq. (4), with y assumed to have its

equilibrium value so that vDG/vyZ0, is

ðm1 Km8
1Þ=RT

Z ln v1 C ð1K1=xÞv2 K lnð1KQÞKQCcv22 (17)

where m1 is the chemical potential of the solvent. The

chemical potential of the solute obtained similarly by

differentiating Eq. (4) with respect to n2 is

ðm2 Km8
2Þ=RT

Z lnðv2=xÞC ð1K1= �xÞxv2 K ½xK ðx

KyÞgxOy� lnð1KQÞKQxCxðnK1Þ ln zc

Kgx%y ln x2 K ðln y2 CCÞgxOy Cxcv21

C
1

16
xGb2ðx3 C3x2 C2xÞ

f3
f1

(18)

where m2 is the chemical potential of the solute. In Eq. (18),

we introduced the notation gx>y and gx%y denoting the

number of rigid rods in a chain with xOy and x%y,

respectively. The orientational distribution function changes

with increasing G or increasing flow rate. For some values

of v2, the system separates into two phases. Conditions for

phase equilibrium are

m
0
1 Zm1 m

0
2 Zm2 (19)

The ordered and disordered phases are distinguished by

appending a prime to quantities for the disordered phase

where distinction is required. By the application of phase

equilibrium conditions, two equations are acquired.

ln½ð1Kv02Þ=ð1Kv2Þ�

Z ð1K1= �xÞv2 K ð1K1= �x0Þv02 K1C2=y

CexpðK2=yÞCcv22 Kc0ðv02Þ
2 (20)

ln½ð1Kv02Þ=ð1Kv2Þ�

Z x½ð1K1= �xÞv2 C ð1K1= �x0Þv02 C1K2=y

KexpðK2=yÞKcð1Kv2Þ
2 Cc0ð1Kv02Þ

2�

KgxOy½2ðx=yK1ÞK2 lnðx=yÞCC�

K
G

2
ðx3 C3x2 C2xÞ

f3
f1

(21)
where the flow parameter G is defined as

GZ
1

8
xGb2 (22)

The flow parameter is proportional to the flow field G.

4.1. Procedure for solving Eqs. (20) and (21)

The Eqs. (20) and (21) were solved by an iterative

method using two loops; one of these loops increments v2
and the other increments v2

0. Another loop is used within

these two loops that calculates the value of y for each v2 and

v2
0. �x and �x0 are set equal to each other and kept constant

throughout the calculations of each system, assuming the

same average dimensions in the isotropic and anisotropic

states. Similarly c and c 0 were set equal to each other. (c

and c 0 were always set to ‘0’ except the first figure in which

c is the changing parameter). The ratio f3/f1 was calculated

from Eq. (13) using quadrature integration. All the terms in

Eqs. (20) and (21) were taken to the lefthand side and the

errors were calculated. Care was taken to check that all

solutions are the real solutions at which the error changes

sign from positive to negative or vice versa, for both

equations.
5. Results

Numerical calculations of phase equilibrium are per-

formed for two systems of block copolymers: The first

system consists of �xZ15 with rod length of xZ10 and coil

length of xcZ5 repeat units. For this system, calculations

are performed for nZ1, 3, and 5, where nZnumber of

blocks (Znumber of coils) in a chain. The second system

consists of �xZ20, with xZ15 and xcZ5 repeat units. For

this system, n is again taken as 1, 3, and 5. The notation used

in the paper is presented in Table 1.

In order to see the effects of the polymer solvent



Table 1

Notation used for the different block copolymers used in calculations

Sample �x x xc n

A1 15 10 5 1

A3 45 10 5 3

A5 75 10 5 5

B1 20 15 5 1

B3 60 15 5 3

B5 100 15 5 5
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interaction parameter c on phase equilibrium, calculations

are first performed for different values of c for sample B1 in

the absence of flow. Results of calculations for the other

samples in the absence of flow showed similar tendencies,

and hence are not presented. Results of calculations for B1

are presented in Fig. 1. The ordinate denotes the c

parameter, and the abscissa denotes the volume fraction of

polymer, the primed quantities denoting the more concen-

trated phase. The filled circles indicate the values for the less

concentrated phase, and the unfilled circles are for the more

concentrated phase. The solid and dashed lines are drawn

through the calculated points to guide the eye. The scatter in

the points show the degree of accuracy in simultaneously

finding the roots of Eqs. (20) and (21). The parameter c is

taken to be the same in the two phases (i.e. c 0Zc) is plotted

against the volume fractions v2 and v 02 of solute in two

phases.

The biphasic region in Fig. 1 shows a sharp narrowing for

c%K0.5. For larger values of c, ie. as the solvent becomes

poorer, the biphasic region becomes wider, as can be seen

from the figure.

Fig. 2 shows the phase diagrams of the two systems A1

and B1 on which flow is applied. The ordinate in Fig. 2 is the

flow parameter G and the abscissa is the volume fraction of

rods.

The curves denote the biphasic boundaries, the filled

circles indicate the less concentrated phase, and the empty

circles are for the more concentrated phase. For the system

B1, the biphasic region terminates at the top at GZ0.10.
Fig. 2. Flow parameter G vs. polymer volume fractions for a binary system

consisting of a solvent and a solute for samples A1 and B1.
Inside the curves, the system consists of two anisotropic

phases in equilibrium. Outside, the systems consist of a

single anisotropic phase, the anisotropy resulting from the

orientation of the chains due to flow. Although the curve for

the system B1 in which �xZ20 intersects the x-axis (i.e.

there is a biphasic region when there is no flow), there is no

phase separation for the zero flow case for the system A1 in

which �xZ15. This is shown in more detail in the inset of

Fig. 2. For both systems A1 and B1, the biphasic region

shifts towards lower values of v2 with increasing flow. The

largest shift in the biphasic region towards more dilute

solutions takes place at very low flow fields, as may be

verified from Fig. 2. Stated in another way, a very small

perturbing flow field generates strong changes in the phase

stability of such materials. The v2 values for which the

system is phase separated are significantly smaller for the

system B1 than the system A1.

It can be seen from a comparison of Figs. 2 and 3 that the

biphasic regions are shifted to the right (to higher

concentrations) as the number of rigid blocks in the chain

increases from 1 to 3. One also observes that the equilibrium

behavior of the two systems is not the same. For the system

B3, there is a solution of Eqs. (20) and (21) for no flow (the

curve begins on the x-axis). On the other hand, for the

system A3, there is no solution of Eqs. (20) and (21) below

GZ0.02. The solutions of Eqs. (20) and (21) for A3

exist only for very large flow parameter values (on the order

of 10K2).
Fig. 3. Flow parameter G vs. polymer volume fractions for a binary system

consisting of a solvent and a solute having three rodlike sequences with

�xZ45 (sample A3) and another with �xZ60 (sample B3).



Fig. 4. Flow parameter G vs. polymer volume fractions for a binary system

consisting of a solvent and a solute having five rodlike sequences with

�xZ60 (sample A5) and another with �xZ100 (sample B5).
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Fig. 4 shows the same systems, but this time there are five

rodlike sequences and randomly coiled units that are

connected to each other. Both curves are shifted to higher

volume concentrations than the systems shown in Figs. 2

and 3. For the system A5 in Fig. 4, a biphasic region is

calculated for values of G in the range 3–5!10K3. Outside

of this range, the system is anisotropic and single phase. The

area within the curves for A5 is smaller than its counterpart

A3 of Fig. 3. For the system B5, with largest molecular

length �xZ100, the solutions to Eqs. (20) and (21) were

found only for small flow parameters, the results of which

are shown in Fig. 4. Biphasic phase equilibrium is observed

for GZ0 as may be seen from the figure.
6. Orientation function

The orientation function S is defined as

SZ
1

2
ð3hcos2jiK1Þ (23)
Fig. 5. Orientation function S calculated as a function of the flow parameter

G for the indicated volume fractions of the polymer, for the system B1 in

which the axial ratio of the rigid sequence is xZ15 and xcZ5.
where hcos2jiZ1K f3=f1. Results of the orientation func-

tion calculations for the system B1 in which the axial ratio

of the rigid sequence is xZ15 and xcZ5 are shown in Fig. 5.

The orientation function is plotted against flow parameter

for two different concentrations, for v2Z0.1 and 0.2. For the

curve corresponding to v2Z0.1, the biphasic region occurs

between 0.025%G%0.05, as may be verified from Fig. 2.

The value of G at the onset of phase separation is marked by

the arrow on the left in the figure. The termination of the

biphasic region is indicated with the arrow on the right. At

the onset of phase separation, the orientation function SZ
0.6. At the end of the phase separated region marked by the

arrow at the right in Fig. 5, SZ0.95. One therefore sees that

there is already a significant degree of anisotropy

(0%S%0.6) in the single phase region before bipahasic

region starts. ForGR0.05, the material is again in the single

phase region, and SR0.95.

For v2Z0.2, the biphasic gap is very narrow, starting at

GZ0.004 and extending up to only GZ0.006, as can be

seen from Fig. 2. The value of S for GZ0.004 is already as

large as 0.90. Fig. 5 shows that the main body of segmental

orientation takes place either before the biphasic region is

entered or within the biphasic region.

In Fig. 6, results of calculations of the orientation

function S against flow parameter G are presented for the

system A1 (xZ10, xcZ5) for three different volume

fractions of the polymer. The arrows on each curve indicate

the termini of the biphasic regions. For the curve

corresponding to v2Z0.5, three different regimes are

observed. The first corresponds to the range 0!G!6!
10K3. In this region, S increases abruptly from 0 to 0.2. This

region corresponds to the single phase, anisotropic region as

can be seen from Fig. 2. In the region 6!10K3!G!10K1,

S increases from 0.2 to about 0.9. This region extends

through the biphasic region as can be verified from Fig. 2.

Above GZ0.01, the system is single phase and highly

anisotropic with GO0.9. When v2Z0.3, the biphasic region

starts at GZ0.04 and ends at GZ0.048. When v2Z0.2, the
Fig. 6. Orientation function S calculated as a function of the flow parameter

G for the indicated volume fractions of the polymer, for the system A1 in

which the axial ratio of the rigid sequence is xZ10 and xcZ5.
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orientation function makes a large jump at GZ0.058 which

corresponds to exactly the onset of biphasic regime as can

be verified from Fig. 2.
7. Conclusion and discussion

All rodlike sytems exhibit phase transitions and self

organization at suitable compositions and temperatures.

However, rod-coil block copolymers may not exhibit self-

organization at equilibrium conditions due to the presence

of coils that have large conformational entropies. One needs

to impose an external orientational field that helps orient the

rodlike components. The entropy decrease associated with

the orientation of the rodlike components then counter-

balances the excess entropy coming from the presence of the

unoriented coils. An elongational flow field imposed on a

stationary solution of such systems is one possibility, and is

employed in the present work. In the lattice model of

Matheson and Flory, the system consists of rigid sequences

whose lengths and locations are fixed by its structure within

each macromolecule. These sequences are separated by

various numbers of random coiled units. As an extension of

the Matheson–Flory model, here an excess free energy other

than the equilibrium Gibbs free energy is introduced by an

elongational flow field. Depending on the magnitude of the

flow, it is shown that biphasic states, which are not

attainable at equilibrium, may be reached under flow. The

effects of composition, polymer–solvent interaction, size of

the co-polymer and flow rates on phase transitions are

investigated. Dependence of the shape and concentration of

biphasic regions on the interaction parameter between

solvent and polymer are demonstrated. Depending on the

size and number of rods, some of the chains studied exhibit a

biphasic region at equilibrium that shifts to lower concen-

trations with increasing flow. In general, very small values

of flow velocities result in large changes in the phase
behavior of the systems studied. The degree of orientation is

studied in reference to flow, concentration and biphasic

conditions. Orientation of the rodlike components increases

sharply if the system is biphasic. For larger flows, where the

system turns into an anisotropic single phase system, the

value of the orientation function becomes very close to unity

that is perfect orientation.
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